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Photoelectron spectroscopy has demonstrated that the two double bonds in hypostrophene 

(~)l experience f~r more effective through-bond than through-space coupling. 2 In homo- 

hypostrophene ~ which lacks laterally fused cyclobutane rings, a return to more normal 

orbital ordering and dominant through-space interaction is expected. A chemical test of 

Br 
1 2 3 

this conclusion is found in the bromination of 2 which proceeds by i~4 addition to give 3 

exclusively. 3 Since experiments designed to evaluate the chemical consequences of high-lying, 

suitably oriented o orbitals on ~ bond reactivity had yet to be performed, the reactivity of 

1 toward several electrophilic reagents was investigated. Intriguingly, eight of this hydro- 

carbon's ten constituent carbon atoms participate in the ensuing structural rearrangement. 

Treatment of 1 at 0 ° in CC14 with 1 equiv of bromine afforded a single oily dibromide 

[95~; 8(CDC13) 5.92 (m, 2), 5-72 (m, 2), 4.41 (m, 1), 3.92 (m, i), and 3.7-3.0 (m, 4)], the 

presence in which of four olefinic protons rules out the operation of simple transannular 

chemistry as exhibited by 2. That the halogens find themselves in differing chemical en- 

viromments was clear from the results of sub~equent~LiAKH4 reduction which gave rise to an 

isomerically pure monobromide [oil, 75%; 6(CDC13) 5.93 (m, 2), 5.48 (m, 2), 3.92 (m, i), 

3.~2-2.40 (m, 5), and 2.27-1.98 (m, i)]. Since further dehalogenation with sodium in liquid 

~w~onia afforded endo-dicyclopentadiene (6), the prior formation of 4aa and ~ was implicated. 

The syn stereochemical assignment to the 8-bromo substituent in these molecules follows from 

mechanistic reasoning (vide infra) and from the selective reactivity of ~ toward dihalocarbene 
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4~a, R I -  R2--Br 
b, RI= Br; R2=OH 
2, R I=Br;  R2=OAc 1 

Br H X C - 

Cl" ~ Cl 

x = B , .  9 
b, X= C[ 

generated under phase-transfer conditions. 4 As a consequence of the steric shielding gen- 

erated by the 8-bromo substituent (possible only when syn orzented), ~ is subject only to 

monoaddition with formation of 7~a (rap 105-106 ° , 55%) and 7~b (rap 78-79 °, 71%) under conditions 

where parent hydrocarbon 6 undergoes reaction at both olefinic sites to give ~. When de- 

ha!ogenated, 7~a and ~ gave the known hydrocarbon 8. 5 

e 
Dalto~ and eoworkers have reported that the addition of NBS in wet DMSO to a wide variety 

6 
of olefins leads regio- and stereospecifieally to the corresponding brcmohydrins. The one 

exception noted by these workers, in that rearrangement occurred, was norbornene. Contrary 
8 

bo early reports, no 2,3-bromohydrin results. In the present study, no partially r~arranged 

intermediates were trapped when i was allowed to react with NBS/H20/DMSO. Rather, bromo 

alcohol 4~b, identical in all respects to the hydrolysis product of 4a, was isolated (74%) and 

characterized as its acetate 4c Imp 90-91°; ~ (CDCI3) 6.20-5.55 (m, 4), 4.95 (m, Hi), 3.98 

(m, Hs), 3.60-3.25 (m, ~), 3.R5-3.0 (m, 1), R. 60-~.45 (m, 1), and ~.02 (s, -CHs)]. 

Because the structural framework in hypostrophene monoepoxide (i0) is fixed so as to 
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permit electrophilic ring opening with initial formation of a cation related to those believed 

to intervene above, the fate of lOin 10% aqueous perchloic acid (25 °, 2h r) was examined. 

This reaction was found to provide uniquely the known 1-exo-8-sym diol ll. s 

0 HO H 

I0 II 

W~at there is to say at present about these rearrangements is based on the assumption 

that electrophilic attack with exo approach to generate l~ is followed by transannular bonding 

with the normal kinetic preference for 5-ring closure. O~ce l~ is generated, two sequential 

cyclobutane bond cleavages follow. The first phase is probably controlled by strain release 

since the cationic center in l~ is not particularly stabilized relative to that in l~. The 

energetic value of the second phase which delivers l~probably lles chiefly in the develop- 
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ments of allylic resonance, 8_Itho~ a ~kLrther di~ainution in strain also OCCtLrs. ~a a direct 

consequence of its syrmnetry~ nucleophilic capture by l~ can occttr with equal probability at 

either allylic terminus. 
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Because of our inability to intercept such hyp_ostrophene rearrangements short of the 

dicyclopentadiene stage, even with most reactive uniparticulate electrophiles such as TC~ 

and CSI, 9 it is perhaps preferable to view the conversion of 12 to l~ as a concerted electronic 

reorganization. In this interpretation, the synchronous flow of electron density which un- 

dulates between the two "sandwiched" cyclopentane rings such that 80% of the carbon atoms 

experience rehybridization can be viewed as the result of the extensive ~, ~ orbital mixing 

which prevails. Certainly, if any barriers to bond-making and bond-breaking do exist on this 

energy profile, their magnitudes have been greatly reduced as compared to the situation in 2 

and other structurally related compounds. 
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